
Coasts at Risk:

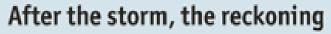
An Assessment of Coastal Risks and the Role of Environmental Solutions

Report at http://www.crc.uri.edu/download/SUC09 _CoastsatRisk.pdf

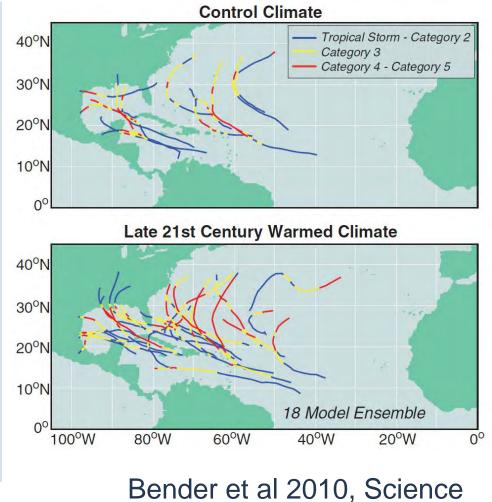
Interactive Maps at www.maps.coastalresilience.org\global

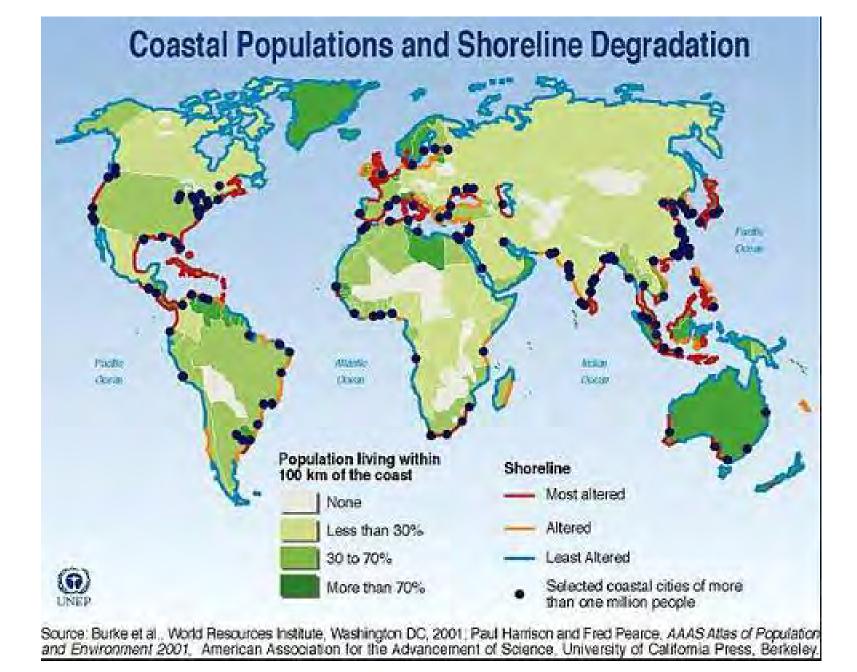
TNC, Arlington, VA // July 30, 2014

Aims


- To examine risks that nations face from vulnerability & exposure to coastal hazards;
- To identify where environmental degradation contributes to these risks; and
- To explore where environmental solutions can contribute to risk reduction.

Storm Hazards Are Real Now & Rising




Storm Hazards Are Real Now & Rising

Global natural-disaster costs, \$bn (2011 dollars)

Coastal Habitats and Risk Reduction Green(er) vs Gray Infrastructure

Builds on World Risk Report

- WorldRiskIndex is our base index;
- 2012 report & index identifies that coastal nations face the greatest risk
- Identifies the need to better assess connections between environment & risk
- We have added more coastal nations and new environmental indicators, included fisheries, and focused on integration

Aims

- To examine risks that nations face from vulnerability & exposure to coastal hazards;
- To identify where environmental degradation contributes to these risks; and
- To explore where environmental solutions can contribute to risk reduction.

Coasts at Risk

An Assessment of Coastal Risks and the Role of Environmental Solutions

The Coast at Risk Index

Torsten Welle, PhD (UNU-EHS) Michael W. Beck. PhD (TNC) Joern Birkmann, PhD (UNU-EHS)

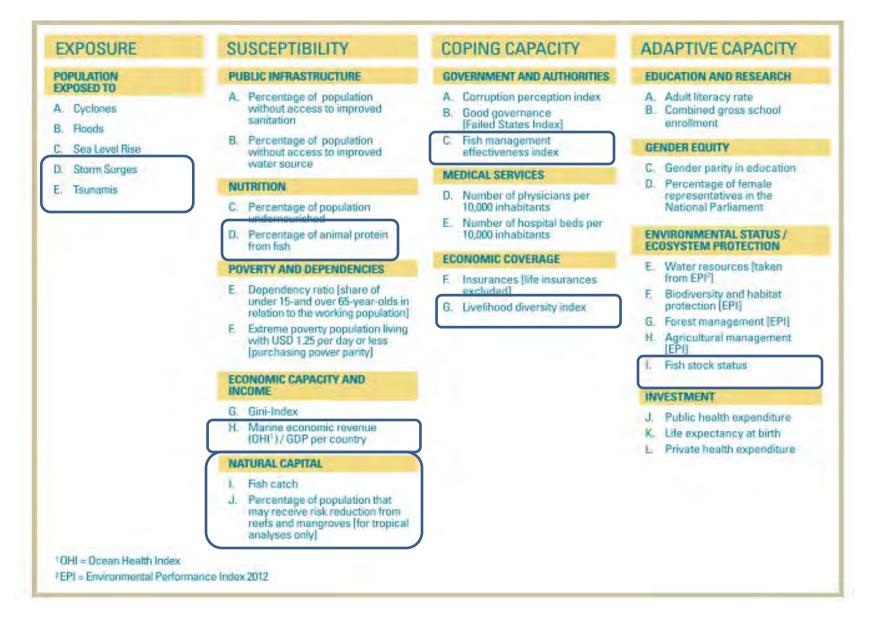
WHY

- Results from the WorldRiskReport 2012 show that all of the Top 15 high risk countries are coastal countries and eight are located in the tropics with large coastal zones – some facing severe environmental degradation (e.g. Philippines; [R: 3]).
- 1.2 billion people (23% of the world's population) live within 100 km of the coast and 50% are likely to do so by 2030 (Adger et al., 2005).
- Communication tool of risk in the context of natural hazards and climate change
- Identification of countries that show high risk to coastal related hazards
- Determination of risk factors, analyse the relationship between environmental indicators and vulnerability
- clarify the need for a longterm and comprehensive approach for disaster risk reduction to the public and stakeholders
- Suggestion for activities regarding disaster risk reduction for several stakeholders (NGO's, authorities)

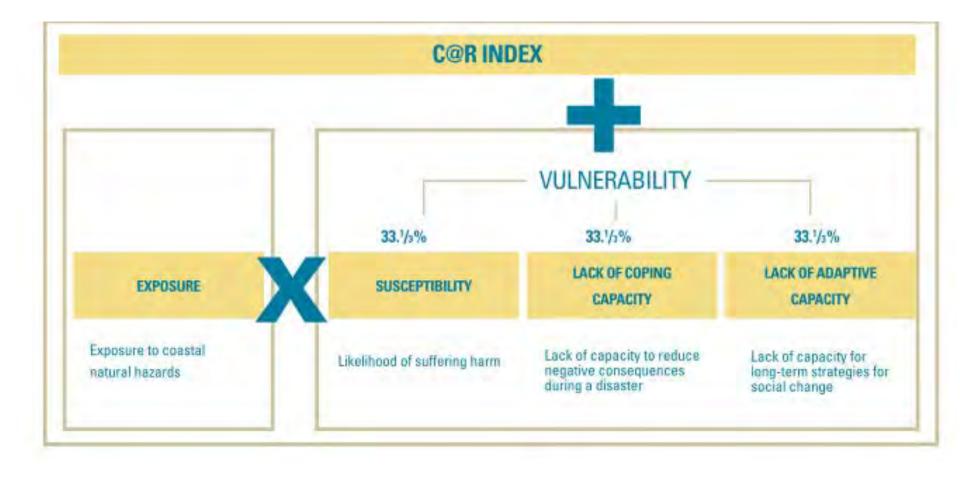
Coasts at Risk: An Assessment of Coastal Risks and the Role of Environmental Solutions

Development Works

Source: Alliance Development works (2012) http://www.worldriskreport .com/

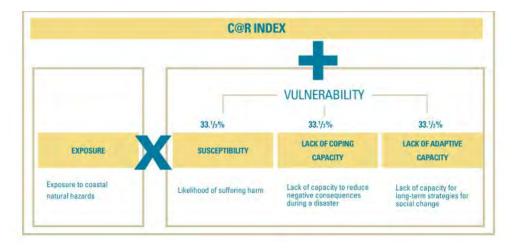

HOW

RISK:

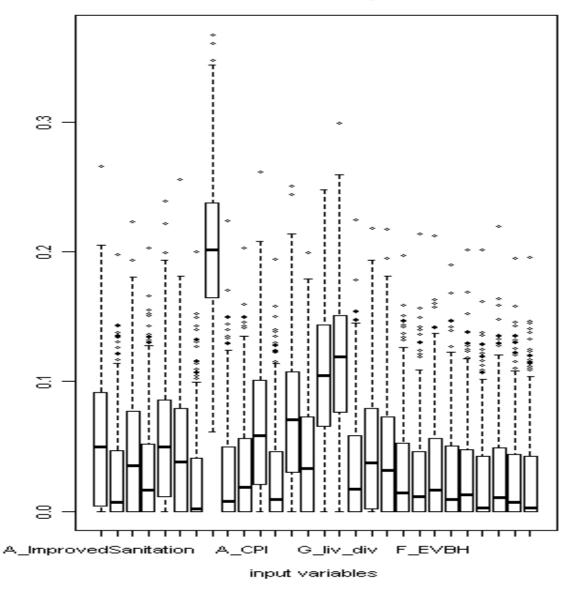

"The probability of harmful consequences or expected loss of lives, people injured, property and livelihoods, economic activity disrupted or environment damage resulting from interactions between natural or human induced hazards and vulnerable conditions" (UN/ISDR 2002)

Indicators

Aggregation

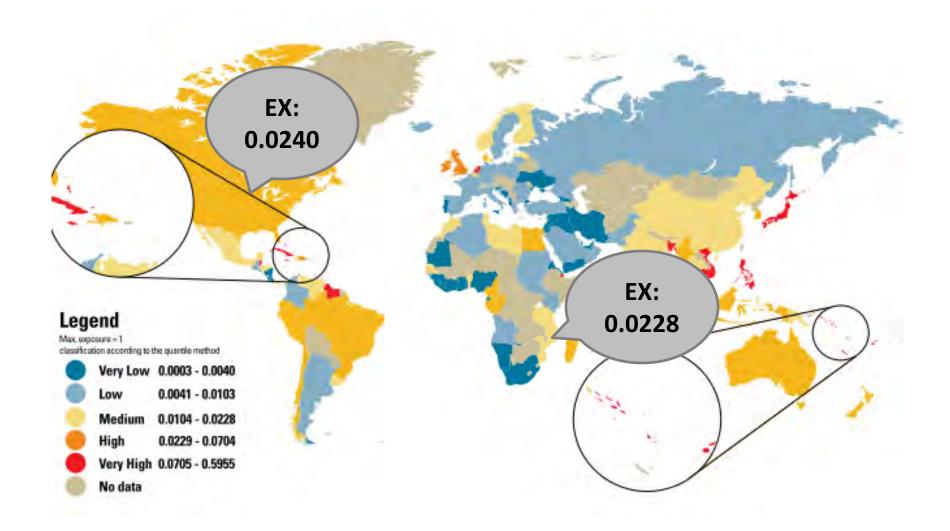

Reliability analysis and factor analysis

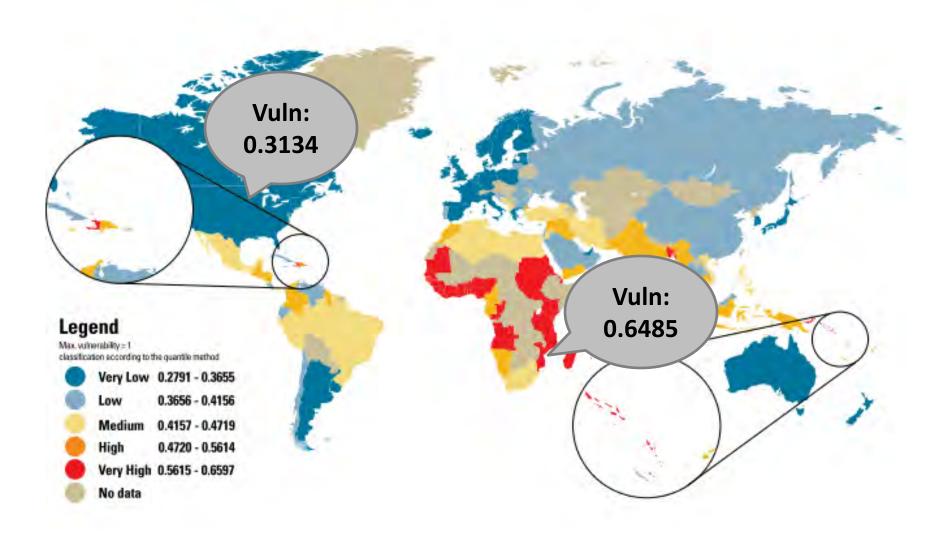
reliability analysis describes the degree of accuracy of an existing model structure and Cronbachs Alpha is a measure for the internal consistency.


Cronbachs Alpha: 0.889

 factor analysis was done in order to validate the aggregation formula of the Coast at Risk Index

Kaiser-Meyer-Olkin (KMO): 0.903 [1.0=best result]

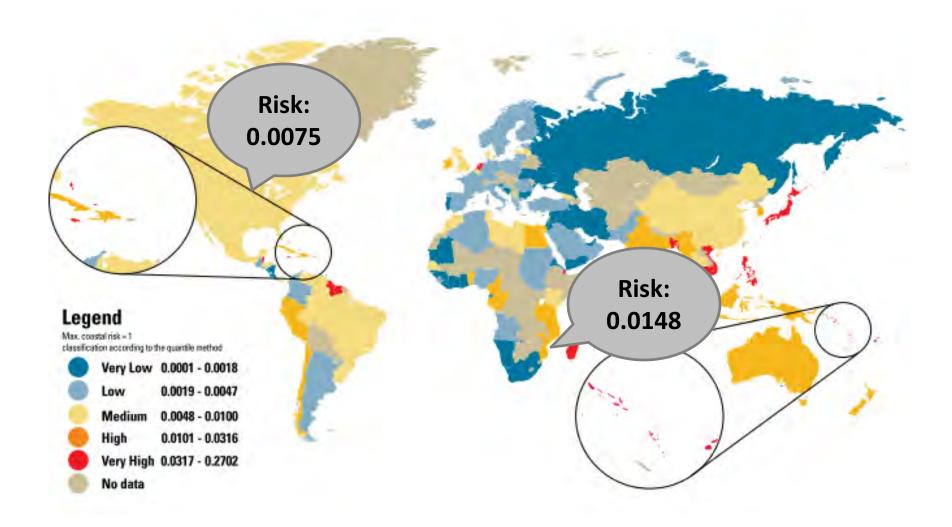

Sensitivity analysis


1st order Sensitivity Indices

Coasts at Risk: An Assessment of Coastal Risks and the Role of Environmental Solutions

Results – Exposure

Results – Vulnerability

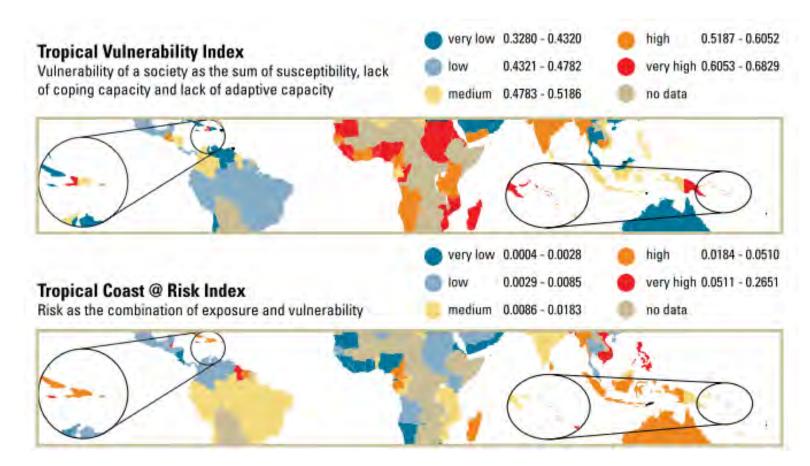


Vulnerability

何

vaniorability		The second second		
Factors	United States	Mozambique 23.98 %		
Percentage of animal protein from fish	6.01 %			
Extreme poverty population living with USD 1.25 per day or less [purchasing power parity]	Approx. 2 % (dummy variable)	More than 59.6% of the population lives below the poverty line		
Fish catch	5.14 bn t	116.478 t		
Governance	Corruption 7.3 [Scala 1-10; 1 highest corruption value]; Failed State Index 34.8 [120 worst value]	Corruption 3.1 Failed State Index 82.4		

Results – Coast at Risk



Results – Coast at Risk

NAME	Rankings (C@R)	COAST at RISK	Exposure	Vulnerabililty	Susceptibility	Lack of Coping Capacity	Lack of Adaptice Capacity
Mozambique	47	0,0148	0,0228	0,6485	0,4837	0,8577	0,6041
United States	68	0,0075	0,0240	0,3134	0,1320	0,4825	0,3257
NAME	Rankings (C@R) COAST at RISK	Exposure	Vulnerabililty	Susceptibility	Lack of Coping Capacity	Lack of Adaptice Capacity
Antigua and Barbuda	1	0,2702	0,5893	0,4584	0,3304	0,6052	0,4398
Tonga	2	0,2482	0,5108	0,4859	0,2823	0,7256	0,4497
Saint Kitts and Nevis	3	0,2366	0,5955	0,3973	0,2211	0,5854	0,3853
Vanuatu	4	0,1508	0,2392	0,6306	0,5053	0,8251	0,5613
Fiji	5	0,1254	0,2568	0,4884	0,2568	0,7470	0,4615
Brunei Darussalam	6	0,1093	0,2818	0,3878	0,1919	0,6011	0,3704
Bangladesh	7	0,1056	0,1878	0,5626	0,2706	0,7792	0,6381
Philippines	8	0,1003	0,2095	0,4786	0,2630	0,7298	0,4431
Seychelles	9	0,0851	0,1776	0,4791	0,3738	0,6113	0,4522
Kiribati	10	0,0830	0,1558	0,5329	0,4264	0,6713	0,5010
Belize	11	0,0779	0,1685	0,4622	0,2375	0,6624	0,4866
Cambodia	12	0,0737	0,1333	0,5533	0,3037	0,8178	0,5385
Bahamas	13	0,0701	0,1717	0,4080	0,2298	0,5720	0,4221
Japan	14	0,0694	0,2080	0,3337	0,1674	0,4767	0,3569
Viet Nam	15	0,0677	0,1445	0,4686	0,2035	0,7309	0,4714
Samoa	16	0,0665	0,1409	0,4719	0,2414	0,6999	0,4743
Mauritius	17	0,0658	0,1548	0,4251	0,2180	0,6204	0,4368
Guyana	18	0,0642	0,1352	0,4752	0,2408	0,7243	0,4607
Netherlands	19	0,0634	0,2036	0,3112	0,1339	0,4892	0,3106
Jamaica	20	0,0522	0,1135	0,4599	0,2562	0,6846	0,4389

Results – tropical Coast at Risk

- Most at risk nations are tropical
- Analysis of the effects of natural capital on overall risk was done because of data availability on tropical coastal habitats

Summary

- Global hot spots of coastal risk :the Caribbean,South Pacific Islands and South East Asia
- Exposure is the most important driver of risk, though vulnerability may be more readily improved to reduce risk
- Tropical analysis showed that through adding "benefits from reefs and mangroves" vulnerability could be reduced in some countries
- Vulnerability in coastal countries is correlated with environmental status
- Indices just show a theoretical concept and it never reflects reality

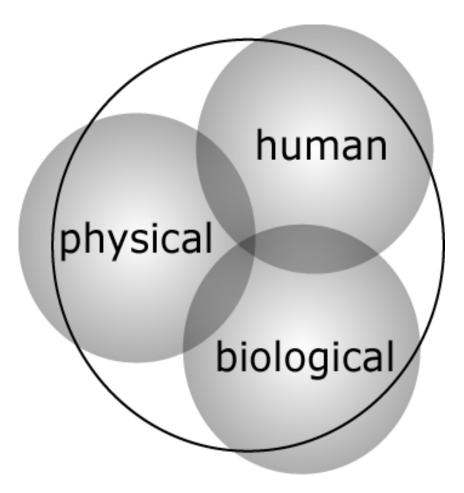
Coasts at Risk: An Assessment of Coastal Risks and the Role of Environmental Solutions

Thank you for your attention!

welle@ehs.unu.edu

Marine Fisheries, Social Vulnerability and Risk

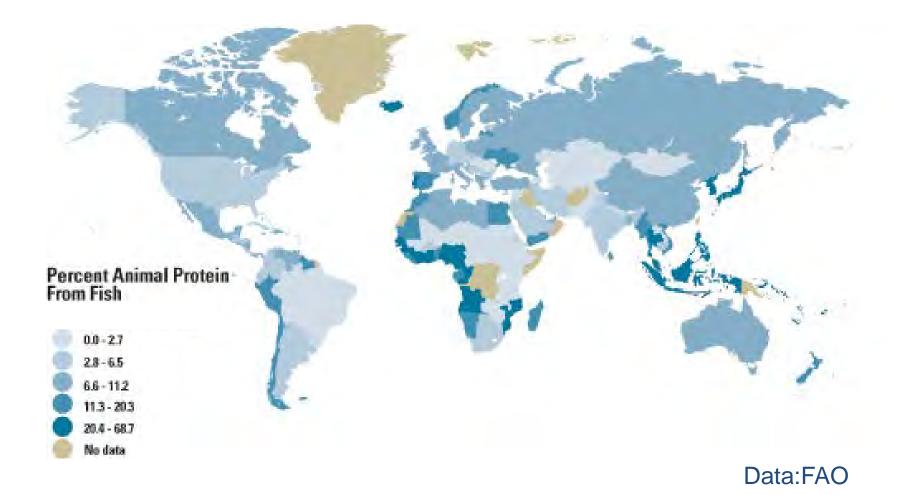
Vera Agostini, PhD Shawn Margles Global Marine Team, The Nature Conservancy

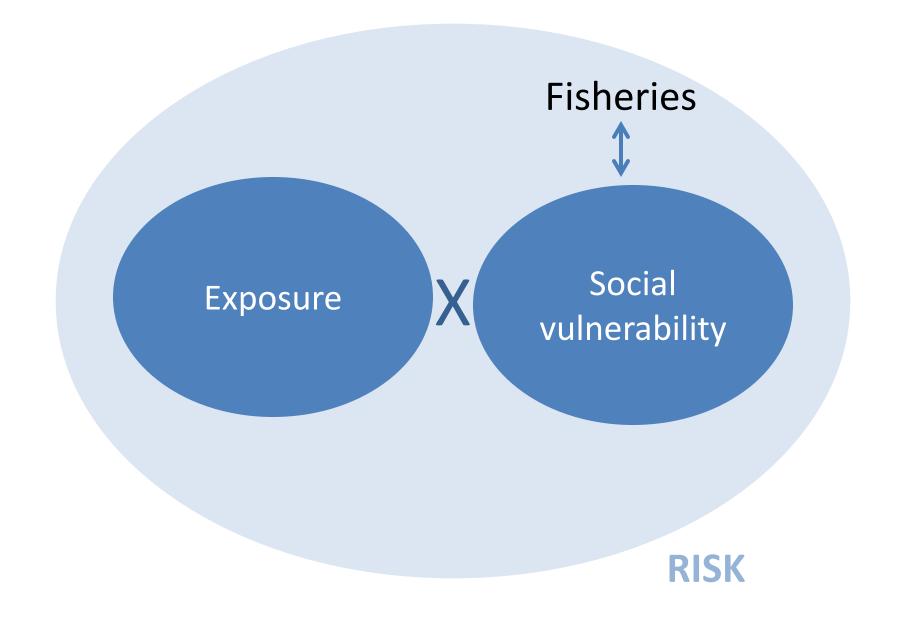


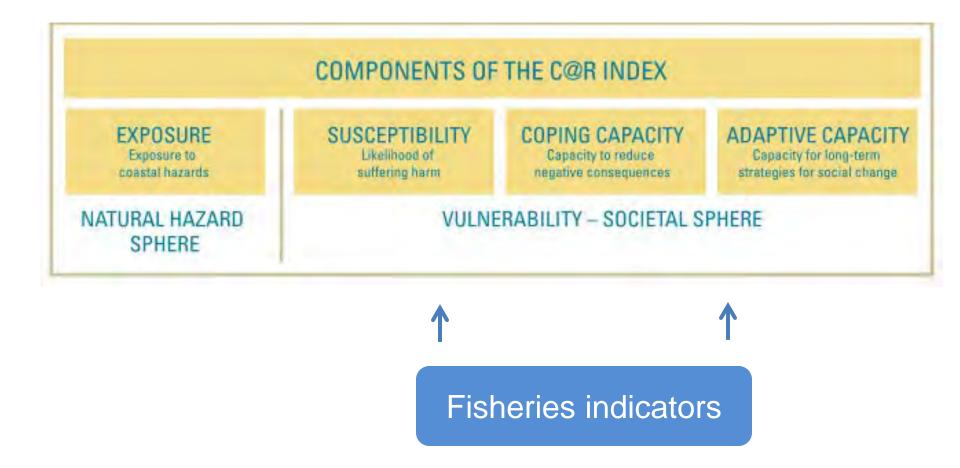
THE UNIVERSITY OF RHODE ISLAND GRADUATE SCHOOL OF OCEANOGRAPHY

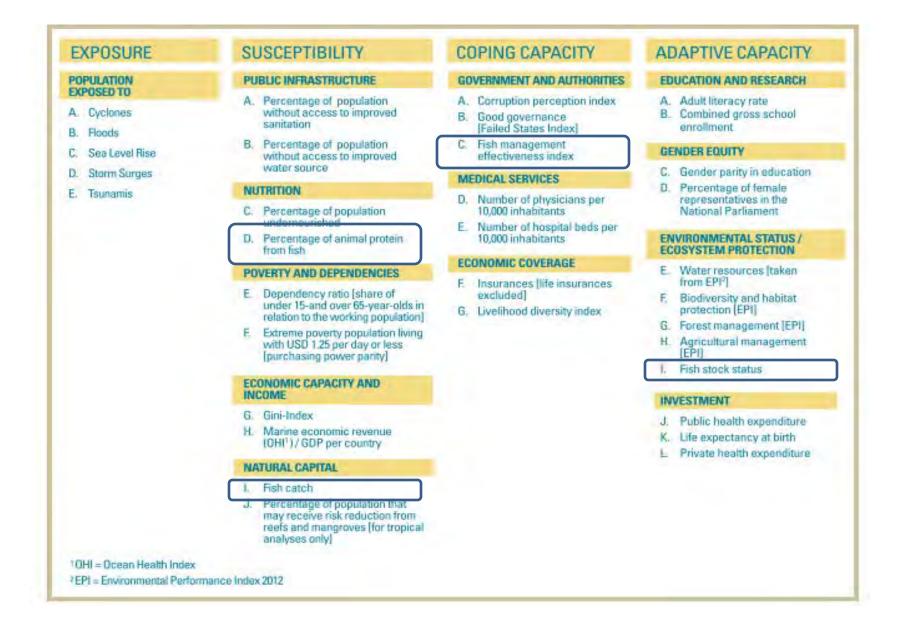
Food 3 billion people

Photo: M. Ajo


Livelihood 660-820 million people


Photo: M. Ajo


Trade: 37 percent by volume of world production


Photo: M. Ajo

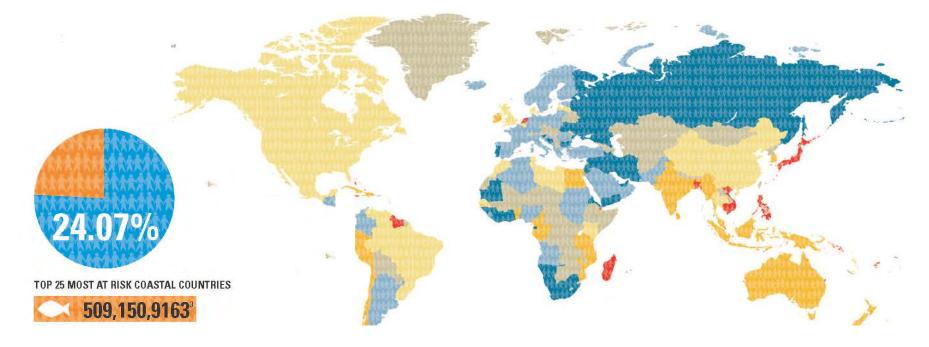
How

How

Susceptibility - nutrition and natural capital

- Percentage of animal protein from fish
- Fish catch

Susceptibility - nutrition and natural capital


- Percentage of animal protein from fish
- Fish catch
- Coping government and authorities
- Fish management effectiveness

Susceptibility - nutrition and natural capital

- Percentage of animal protein from fish
- Fish catch
- Coping government and authorities
- Fish management effectiveness
- Adaptive capacity Ecosystem vitality
- Fish stock status

Fisheries and risk

Data:FAO and c@risk

Fisheries and risk

Second Second		100000000	
Country	Total 2012 Population	Number of Fishing Jobs	C@R Index Rank
China	1,350,695,000	2,570,274	medium
Indonesia	246,864,191	1,640,705	high
India	1,236,686,732	1,011,471	high
Viet Nam	88,775,500	944,788	very high
Burma	52,797,319	513,879	high
Brazil	198,656,019	497,819	medium
Taiwan	23,315,000	406,475	not included in C@R
Philippines	96,706,764	365,141	very high
Nigeria	168,833,776	294,558	low

Data:WB and FAO

Protecting nature. Preserving life."

The Found of Humanity, Serving the Community Become Australian Rode

Summary

Fisheries are central to food, livelihood

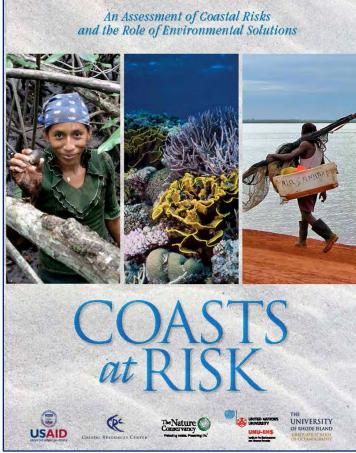
Fisheries are a critical component of managing risks to coastal hazards

 Fisheries and disaster risk management need to be better integrated

Photo: M. Ajo

Coasts at Risk: An Assessment of Coastal Risks and the Role of Environmental Solutions

THANK YOU vagostini@tnc.org



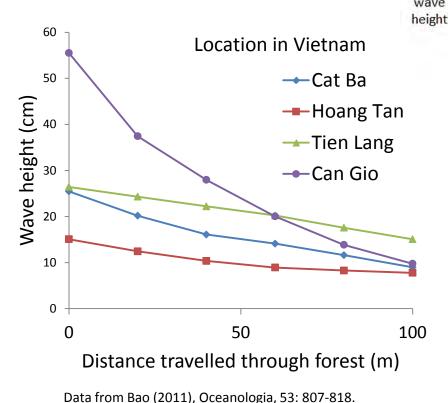
Coasts at Risk

An Assessment of Coastal Risks and the Role of Environmental Solutions

THE UNIVERSITY OF RHODE ISLAND GRADUATE SCHOOL OF OCEANOGRAPHY

Coastal Habitats

Do mangroves attenuate wind waves?


Location	Species	Wate attenuation / transmission	Source
Cocoa Creek, Australia	Rhizophora stylosa	Wave transmission factor 0 to 0.7	Brinkman <i>et al.</i> 1997
Iriomote Island, Japan	<i>Bruguiera</i> sp.	Wave transmission factor 0.2 to 0.8	Brinkman <i>et al.</i> 1997
Tong King Delta, Vietnam	Kandelia candel	Waves attenuated 20% per 100m	Mazda <i>et al.</i> 1997
Vinh Quang coast, northern Vietnam	<i>Sonneratia</i> sp.	45% / 100m when water 0.2m deep, 26% per 100m when water 0.6m deep	Mazda et al. 2006 (typhoon conditions)
Red River Delta, Vietnam	Kandelia candel	0.002 to 0.011/m	Quartel <i>et al.</i> 2007
Nang Hai, Can Gio Mangrove Forest, Vietnam	Avicenia sp. and Rhizophora sp.	50-70% in first 20m (coinciding with 2m scarp)	Vo-Luong & Massel 2006, 2008
Red River Delta and Can Gio forest, Vietnam	as above	mean 0.0043/m over 80m of forest	Bao, 2011

Yes, all studies so far have shown that mangroves are capable of attenuating waves (i.e. reducing wave energy and height).

A 100m wide mangrove belt can reduce wave height by 13 to 66%.

Factors affecting wave attenuation

- a) Distance travelled through mangrove
- b) Projected area (species, density, age) + water depth/tidal phase
- c) Wave height
- d) Topography

mangrove species root structure water depth distance travelled and height slope (≈ tidal phase) through mangrove High ~~~~~~ Low High ~~~~~~~~~~~~~~~~~

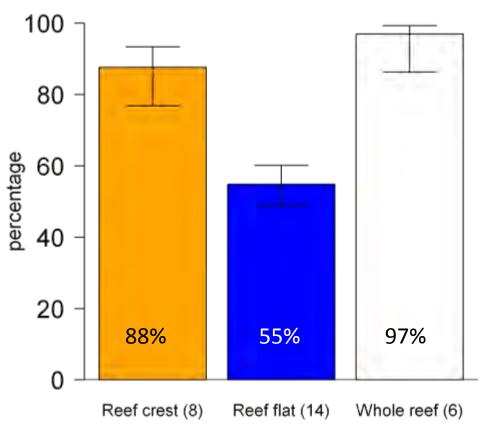
age and size

of trees

density of trees

height of

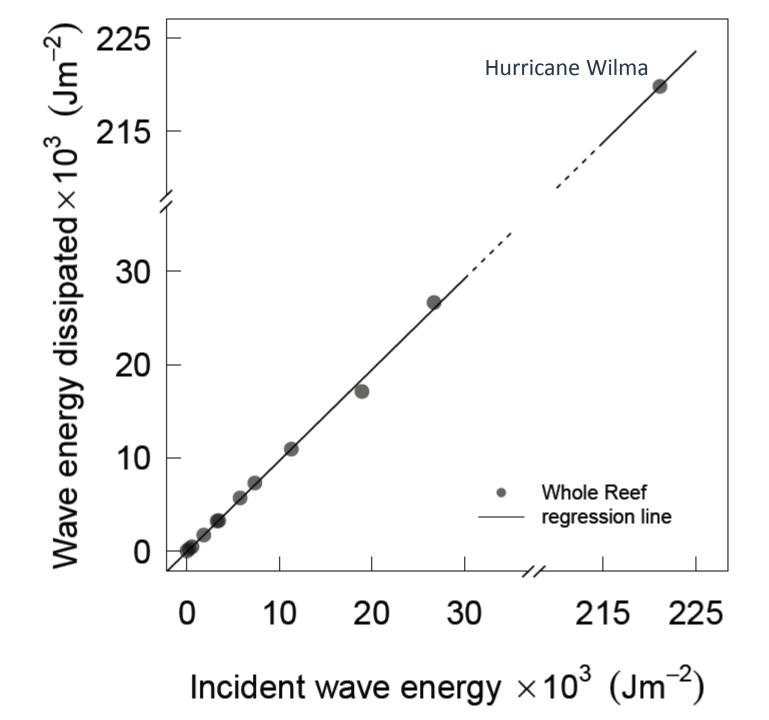
leaves


Do mangroves reduce storm surges?

Limited data available on water levels and inundation; validated numerical models are more useful.

Location	Storm surge	Water level height reduction
Ten Thousand Islands NWR, FL USA	Hurricane Charley, 13 August 2004, max winds 240 km/hr, peak water level travelled at 0.4 km/hr	9.4 cm/km across whole area (15.8 cm/km in mangrove area)
Shark River (Everglades), FL, USA	Hurricane Wilma, 24 October 2005,	4.2 cm/km
Gulf Coast, Florida, from Sanibel West to Key West, USA	Hurricane Wilma	Models suggest 23 to 48 cm/km

Mangroves attenuate storm surges by a small amount per km. Therefore wide bands of mangroves needed to reduce storm surges.


Wave Energy Reduction By Coral Reefs

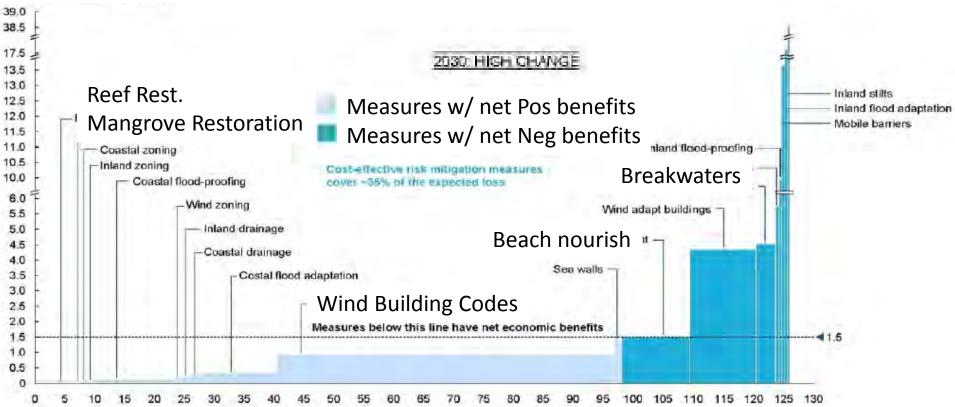
Reef environment (sample size)

Location	Source (refs)	Length (m)	Year	Original cost (\$)	Cost* 2012 (\$)	2012 Unit cost (\$ m ⁻¹)
Sri Lanka	64	16,000†	1994 [‡]	13,400,000	20,759,511	1,297
Maldives	16	1\$	1997 [‡]	10,000	14,305	14,305
Haleiwa, Hawaii	65	58	1975	150,000	640,132	11,037
Hilo, Hawaii	65	3,073	1946	1,500,000	17,661,077	5,747
Kalaupapa, Hawaii	65	35	1967	95,000	653,037	18,658
Kawaihae, Hawaii	65	808	1973	6,000,000	31,026,216	38,399
Manele, Hawaii	65	143	1965	742,850	5,414,410	37,863
Nawiliwili, Hawaii	65	152	1959	1,000,000	7,889,828	51,907 39,296 14,300 188 °
Pohoiki, Hawaii	65	27	1979	335,500	1,061,003	39,296
Auasi, Samoa	65	206	1981	1,166,300	2,945,825	14,300
Aunuu, Samoa	65	27	1981	2,018,400	5,098,048	188
Tau, Samoa	65	88	1981	2,020,400	5,103,099	
Agana, Guam	65	221	1977	1,220,550	4,624,273	
Sungai, Malaysia	66	15	2008	428	456	i an i
Korea	67	3,000	2010	124,000,000	130,561	edian 4524
Nakhon Si Thammarat, Thailand	68	40	2012	180950	18	4524

Table 2 | Costs of coral reef restoration projects.

Restoration technique	Location	Source (refs)	Year	Original cost (\$ m ⁻²)	2012 Unit cost* (\$ m ⁻²)	2012 Linear unit cost [†] (\$ m ⁻¹)
Paving slabs + chain-link fencing	Maldives	62	1994	40	62	620
Armorflex	Maldives	62	1994	103	159	1,590
Armorflex + coral transplantation	Maldives	62	1994	151	233	2,330
Concrete Blocks	Maldives	62	1994	328	508	5,080
Concrete structures + coral transplantation	Florida	69	1991	550	927	927
Concrete structures + coral transplantation	Florida	69	1994	10,000	15,500 [‡]	155,000
Rock stabilization	Indonesia	70	2005	5	6	60
Reef Ball	Various	70	2005	40	47	and a second
EcoReef	Various	70	2005	70	82	
Biorock	Various	61	2005	1.6-110	2-129	Nedian

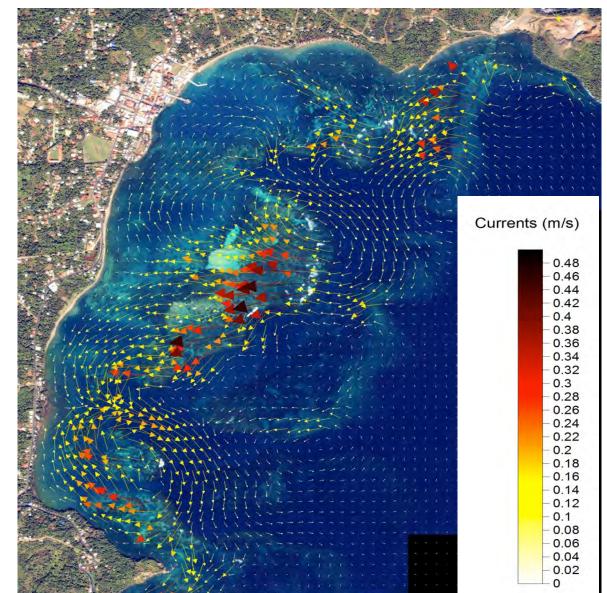
Ferrario, Beck et al. 2014. Nature Communications .


Barbados

Examining Costs: Benefits of Coastal Adaptation Approaches

Cost-benefit ratio and loss avoidance potential for adaptation measures

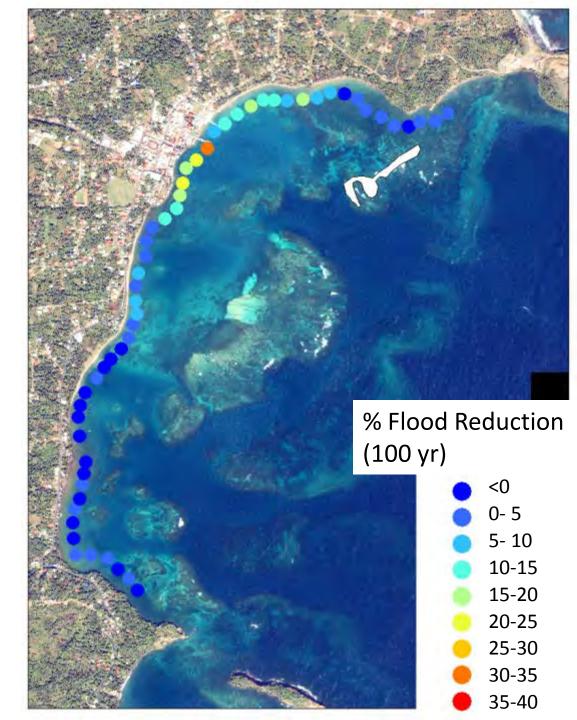
USD millions, 2009


Cost:Benefit (\$M)

Amount of Averted Loss (\$M)

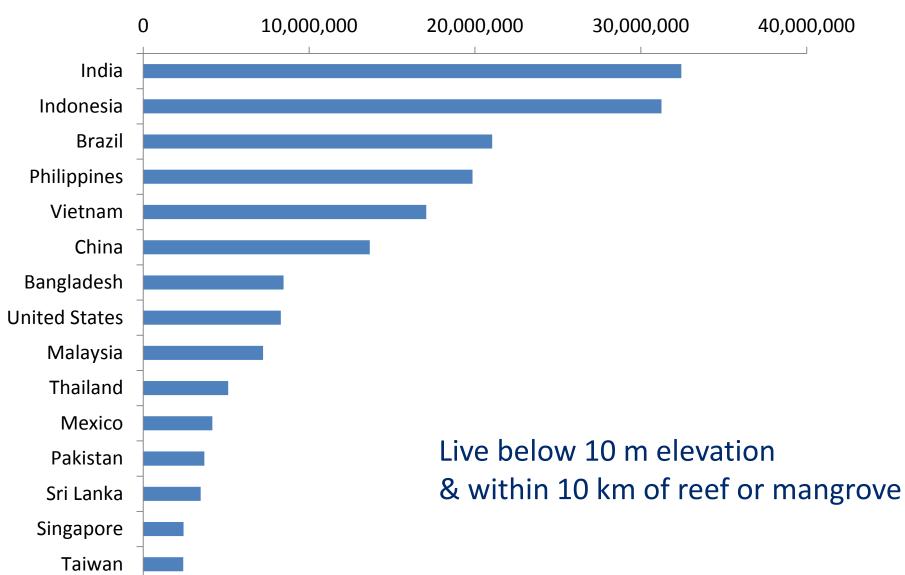
Based on work by Economics of Climate Adaptation working group- Swiss Re climada model

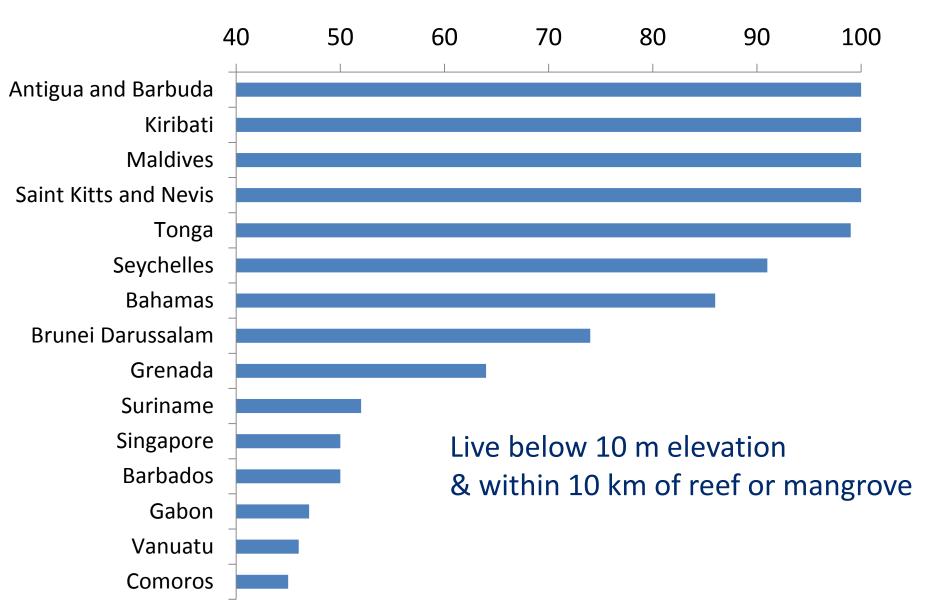
Grenville, Grenada Reef Restoration Detailed Nearshore Hydrodynamics Analysis



Currents

Flood Reduction: Reef Restoration vs Current Situation





People Who May Benefit from Reefs & Mangroves

of people

People Who May Benefit from Reefs & Mangroves % of population

Environmental Indicators in C@R

EXPOSURE

POPULATION EXPOSED TO

- A. Cyclones
- B. Roods
- C. Sea Level Rise
- D. Storm Surges
- E. Tsumernis

SUSCEPTIBILITY

PUBLIC INFRASTRUCTURE

- Percentage of population without access to improved sanitation
- B. Percentage of population without access to improved water source

NUTRITION

- C. Percentage of population undernourished
- D. Percentage of animal protein. from fish

POVERTY AND DEPENDENCIES

- E. Dependency ratio (share of under 15-and over 65-year-olds in relation to the working population)
- F. Extreme poverty population living with USD 1.25 per day or less [purchasing power parity]

ECONOMIC CAPACITY AND INCOME

G. Gini Index H. Marine economic revenue

[OHI']/GDP per country

NATURAL CAPITAL

- L Fish catch
 J. Percentage of population that may receive risk reduction from
 - reets and mangroves [for tropical analyses only]

COPING CAPACITY GOVERNMENT AND AUTHORITIES A. Comuption perception index B. Good governance (Failed Chates Index)

C. Fish management

effectiveness index.

MEDICAL SERVICES

- D. Number of physicians per 10,000 inhabitants
- E. Number of hospital beds per 10,000 inhabitants

ECONOMIC COVERAGE

- E Insurances [life insurances excluded]
- G. Livelihood diversity index

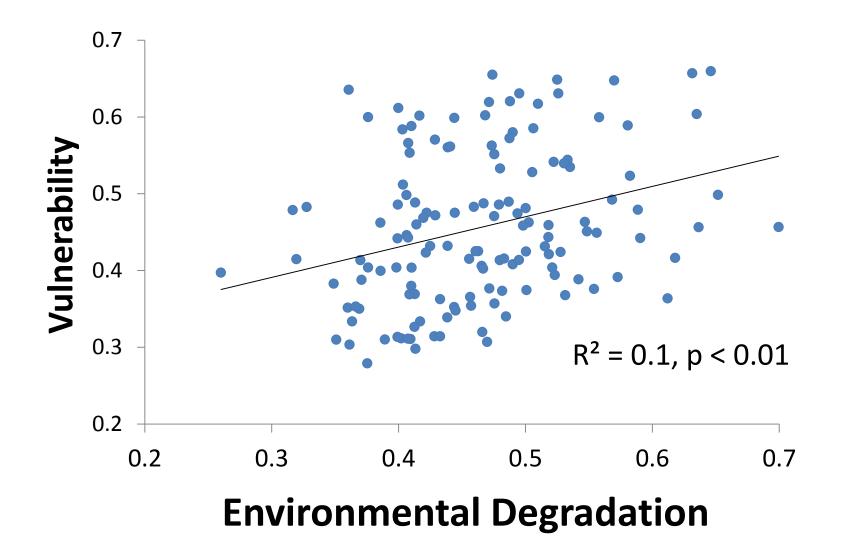
ADAPTIVE CAPACITY

EDUCATION AND RESEARCH

- A. Adult iteracy rate
- B. Combined gross school enrolment

GENDER EQUITY

- C. Gender parity in education
- D. Percentage of female representatives in the National Parliament


ENVIRONMENTAL STATUS/ ECOSYSTEM PROTECTION

- E. Water resources [taken from EPIP]
- F. Biodiversity and fisbitat protection [EPI]
- G. Forest management [EPI]
- H. Agricultural management [EPI]
- I. Fish stock status

INVESTMENT

- J. Public health expenditure
- K. Life expectancy at birth
- L Private health expenditure

Environment & Social Vulnerability

Recommendations

There is a need to increase risk prevention measures and opportunities for better post-disaster development choices

- Post-disaster choices could support risk reduction & conservation
- Govt's and multinational funders should be more cautious about rebuilding in highest risk, low-lying areas.

Habitat restoration can contribute to risk reduction and opportunities exist to focus these restoration efforts

- Coral reef and mangrove restoration offer cost-effective options

Recommendations

Targeted research is needed on environmental risk reduction services to create better opportunities for investment Govt's & multinational funders need integrated risk assessments that account for drivers of risk, e.g., env. degradation

Leaders need to demand more cost-effective solutions thus creating investment opportunities in natural infrastructure

- Adaptation and development funders should encourage better mainstreaming of cost-effective solutions
- Habitat restoration creates opportunity for business

Coasts at Risk: An Assessment of Coastal Risks and the Role of Environmental Solutions

Recommendations

Fisheries management and research need to be better linked to disaster risk reduction and climate adaptation

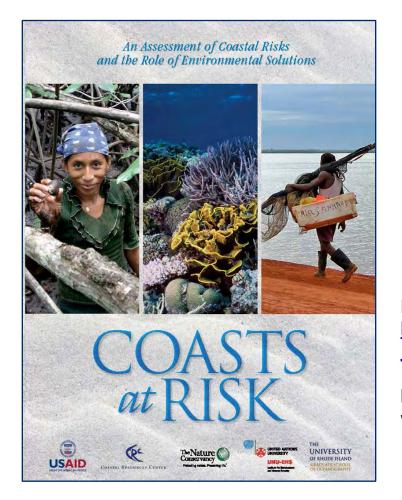
Creating opportunities to improve fisheries and reduce social vulnerability

Coasts at Risk

An Assessment of Coastal Risks and the Role of Environmental Solutions

Thank You

Protecting nature. Preserving life.



UNU-EHS

THE UNIVERSITY OF RHODE ISLAND GRADUATE SCHOOL OF OCEANOGRAPHY

Coasts at Risk:

An Assessment of Coastal Risks and the Role of Environmental Solutions

Report at http://www.crc.uri.edu/download/SUC09 _CoastsatRisk.pdf

Interactive Maps at www.maps.coastalresilience.org\global

UNITED NATIONS UNIVERSITY UNU-EHS Initials for Informatic

TNC, Arlington, VA // July 30, 2014